Муниципальное учреждение «Отдел образования» администрации городского округа «Город Волжск» Муниципальное общеобразовательное учреждение «Волжский городской лицей»

Согласовано

Руководитель Кванториума Е.А.Голомидова «29» августа 2025 г. «Утверждаю» Директор МОУ «ВГЛ» Залова Приказ № 2908002-од от 29.08.2025 г.

Дополнительная общеобразовательная общеразвивающая программа «ХАЙТЕК» С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ДЕТСКОГО ТЕХНОПАРКА «КВАНТОРИУМ»

ID программы: 8085

Направленность программы: научно - техническая

Уровень программы: базовый

Категория и возраст обучающихся: учащиеся 10-15 лет

Срок освоения программы: 1 год

Объем часов: 272

Разработчик программы: Балабанов Анатолий Сергеевич,

педагог дополнительного образования

Содержание

Пояснительная записка	3
Учебно-тематический план обучения	9
Оснащение и наглядные пособия	12
Учебно-методическое обеспечение программы	13

Пояснительная записка

Целевое назначение программы: Овладение учащимися прочными начальными общетехническими знаниями и умениями в области 3D моделирования, развитие конструкторских способностей детей и формирование пространственного представления за счет освоения базовых возможностей среды трехмерного компьютерного моделирования для дальнейшей работы и профессионального самоопределения.

Программа отвечает требованиям направления региональной политики в сфере образования – развитие научно-технического творчества детей.

Учебный курс дополнительного образования «Хайтек» имеет техническую направленность и призван способствовать формированию у молодежи интереса к современным технологиям. Курс представляет одно из направлений образовательной программы 3D-моделирование. Настоящая программа по содержанию имеет техническую направленность, по уровню усвоения – профессионально-ориентированная. Текущая программа направлена на средства ознакомления с возможностями построения чертежей в системе трехмерного моделирования КОМПАС-3D в рамках полученного оборудования детского технопарка Кванториум. Программа помогает выявить личные возможности обучающихся и определиться с выбором дальнейшей профессии, основы профессиональных знаний и мастерства. получить Программа адресована всем тем, кто планирует связать свою жизнь с конструированием, моделированием, строительством. Программа направлена на формирование навыков работы с двухмерными и трехмерными чертежами. Полученные в ходе изучения настоящей программы знания и умения обучающиеся смогут применить на практике в различных областях современной деятельности: дизайн, архитектура, образование, конструирование, робототехника и т.д.

Программа разработана в соответствии с Федеральным законом «Об образовании в Российской Федерации» от 29.12.2012г., Концепцией развития дополнительного образования от 4 сентября 2014 г. № 1726-р; Письмом Минобрнауки РФ от 11.12.2006г. № 06-1844 «О примерных требованиях к

программам дополнительного образования детей», Порядком организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (приказ Минобрнауки от 29.08.2013г. № 1008) и Уставом Муниципального образовательного учреждения «Волжский городской лицей».

Актуальность программы

Современные графические программы значительно ускоряют процесс проектирования, позволяя оперативно создавать, вносить коррективы и визуализировать объекты. Сформированные информационно-коммуникационные компетенции и умения, связанные с работой в графических программах, будут полезны обучающимся для получения таких профессий, как инженер-проектировщик, инженер-конструктор, архитектор и т.д.

Целесообразность обучения школьников методам 3D-печати обусловлена широким распространением данных технологий и растущим спросом на них, поэтому 3D-печать может стать одним из элементов школьной программы уже в ближайшее время.

Особенностью курса будет направленность на развитие технического творчества и инженерного мышления.

Программа основана на следующих принципах обучения:

- принцип наглядности;
- принцип последовательности;
- принцип научности;
- принцип сознательности и активности;
- принцип прочности знаний;
- принцип индивидуализации в обучении.

Программа структурирована по разделам, расположенным по увеличению сложности изучаемого материала и увеличению доли практических занятий. Практические занятия по программе связаны с использованием

вычислительной техники: компьютеров, 3D-принтеров. Программа ориентирована на применение информационных, электронных и микропроцессорных средств в жизни человека.

Режим занятий

Время	Продолжительность	Количество	Количество	Количество
обучения	занятия	занятий в	часов в неделю	часов в год
		неделю		
сентябрь-	2 академических	два раза в	8 академических	272 часа
май	часа	неделю	часов	

В процессе реализации программы используется следующие основные формы учебных занятий:

- фронтальные (беседа, лекция, проверочная работа);
- индивидуальные (инструктаж, разбор ошибок, индивидуальная сборка робототехнических средств).

Виды учебных занятий:

- Лекция;
- Практика;
- Опрос;
- Консультации.

Способы проверки результатов освоения программы:

Для отслеживания результативности образовательного процесса используются следующие виды контроля:

- начальный контроль (вводное тестирование, собеседование);
- текущий контроль (осуществляться по результатам выполнения учащимися практических заданий);
- промежуточный контроль (выполнение творческих заданий, самостоятельных работ);

• итоговый контроль (защита проектов, выставка работ, участие в конкурсах, соревнованиях).

Цели и задачи курса:

Главной целью программы является развитие интереса школьников к технике и техническому творчеству, создание благоприятных условий для разностороннего развития личности: интеллектуального развития, удовлетворения интересов, способностей и дарований обучающихся, их самообразования, профессионального самоопределения.

Изучение курса «Хайтек» направлено на достижение следующих целей:

- развитие интереса школьников к технике и техническому творчеству;
- овладение базовыми навыками программирования и технического конструирования;
- развитие логического мышления;
- установление причинно-следственных связей;
- анализ результатов и поиск новых решений;
- коллективная выработка идей, упорство при реализации некоторых из них;
- построение алгоритмов работы микропроцессорных система, программирования выполняемых ими функций и обеспечение их работоспособности.

Основные задачи курса:

- Формирование мотивации успеха и достижений, творческой самореализации на основе организации предметно-преобразующей деятельности;
- Формирование знаний, умений и навыков в технической, конструкторской и проектной деятельности в области разработки микропроцессорных систем;

- Развитие познавательного интереса обучающихся;
- Развитие умения работать по предложенным инструкциям;
- Формирование умения искать и преобразовывать необходимую информацию на основе различных информационных технологий;
- Развитие регулятивной структуры деятельности, включающей целеполагание, планирование, прогнозирование, контроль, коррекцию и оценку;
- Развитие умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы;
- Развитие коммуникативной компетентности обучающихся на основе организации совместной деятельности;
- Развитие индивидуальных способностей ребенка;
- Повышение интереса к учебным предметам;
- Мотивация к осознанному выбору инженерной направленности обучения в будущем.

Планируемые результаты:

По окончанию курса обучения учащиеся должны знать:

- основные компоненты программно-управляемых устройств;
- устройство, основные элементы и базовые принципы работы микропроцессорного модуля;
 - принципы программирования микропроцессоров;
- основные принципы сопряжения микропроцессорных модулей с электронными схемами и устройствами;
- правила техники безопасности при работе с электрическими устройствами.

учащиеся должны уметь:

- программировать микропроцессорный модуль;

- проводить сборку и подключение электронных схем к микропроцессорным модулям по инструкции;
 - создавать базовые программы для микропроцессорного модуля;
 - довести решение задачи до работающей модели;
- излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- работать над проектом в команде, эффективно распределять обязанности;
- работать с литературой, с журналами, с каталогами, в сети Интернет (изучать и обрабатывать информацию).

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН ОБУЧЕНИЯ

No॒	Наименование разделов и тем		Количество ча	сов
		Всего	Теоретич. занятия	Практич. занятия
1.	Вводное занятие. Техника безопасности. Тест для выявления начальных знаний в сфере IT.	4	2	2
2.	Введение в схемотехнику. Изучение УГО, электросхем.	6	6	-
3.	Введение в черчение. Чтение чертежей, изучение ГОСТов. Первый самостоятельный чертеж.	8	4	4
4.	Подготовка к первому проекту. Блок теории. Знакомство с платой микроконтроллера. Изучение понятия и принципов работы светодиода, резистора. Разбор схемы сборки проекта.	8	8	-
5.	Введение в программирование. Блок программный. Знакомство с языком С++, семантика, логика. Первые команды.	6	6	-
6.	Исполнение первого проекта. Блок практики. Сборка проекта на макетной плате. Написание первого скетча. Проверка работы.	6	-	6
7.	Расширение возможностей. Доработка проекта по условиям.	4	-	4
8.	Закрепление материала. Комплексная тестовая задача.	6	-	6
9.	Подготовка ко второму проекту. Блок	6	6	-

	T	1		
	теории. Изучение понятия и принципов работы кнопки, зуммера. Разбор схемы			
	сборки проекта.			
10.	Блок программный. Повторение ранее изученного материала. Тест на знания ранее изученных команд. Изучение новых команд.	6	4	2
11.	Исполнение второго проекта. Блок			
	практики. Сборка проекта на макетной плате. Написание скетча. Проверка работы.	6	-	6
12.	Пример практического применения проекта. Закрепление материала. Игра-викторина «Метіпі, novi» («Помню, знаю»)	4	-	4
13.	Подготовка к третьему проекту. Блок теории. Изучение понятия и принципов работы сервопривода. Разбор схемы сборки проекта.	4	4	-
14.	Блок программный. Повторение ранее изученного материала. Тест на знания ранее изученных команд. Изучение новых команд.	6	4	2
15.	Исполнение третьего проекта. Блок практики. Сборка проекта на макетной плате. Написание скетча. Проверка работы.	6	-	6
16.	Расширение возможностей. Доработка проекта по условиям.	4	-	4
17.	Закрепление материала. Комплексная тестовая задача.	6	-	6
18.	Подготовка к четвертому проекту. Блок теории. Изучение понятия и принципов работы ультразвукового датчика. Разбор схемы сборки проекта.	4	4	-
19.	Блок программный. Повторение ранее изученного материала. Тест на знания ранее изученных команд. Изучение новых команд.	6	4	2
20.	Исполнение четвертого проекта. Блок практики. Сборка проекта на макетной плате. Написание скетча. Проверка работы.	6	-	6
21.	Закрепление материала. Комплексная тестовая задача.	6	-	6
22.	Подготовка к пятому проекту. Блок теории. Изучение понятия и принципов работы датчика цвета. Разбор схемы сборки проекта.	4	4	-
23.	Блок программный. Повторение ранее изученного материала. Тест на знания	6	4	2

	ранее изученных команд. Изучение			
	новых команд.			
24.	Исполнение пятого проекта. Блок			
	практики. Сборка проекта на макетной	6		6
	плате. Написание скетча. Проверка		_	U
	работы.			
25.	Закрепление материала. Комплексная	6	_	6
	тестовая задача.	O .		
26.	Робот ЭКО. Дальномер. Сборка,			
	настройка, программирование,	8	-	8
	испытания.			
27.	Робот ЭКО. Радар. Настройка,	6	-	6
20	программирование, испытания.			
28.	Робот ЭКО. Датчик приближения.			
	Настройка, программирование,	6	-	6
20	испытания.			
29.	Робот ЭКО. Музыкальный секвенсор. Сборка, настройка, программирование,	8	_	8
	испытания.	O	_	в
30.	Робот ЭКО. Конкурсное задание.			
30.	Охранный сканер. Сборка, настройка,	10	_	10
	программирование, испытания.	10		10
31.	3D моделирование. Блок теории.			
	Чертежи, виды, проекции. Программные	6	6	-
	средства для выполнения 3D моделей.			
32.	3D моделирование. Блок теории. 3D			
	принтер – знакомство, принципы	4	4	-
	работы, программное обеспечение.			
33.	3D моделирование. Тест по	2	_	2
	пройденному материалу.			
34.	3D моделирование. Блок практики.			
	Модель «Сова». Подготовка и	2	-	2
25	исполнение на 3D принтере.			
35.	3D моделирование. Блок практики.			
	Модель «Подставка для смартфона». Подготовка и исполнение на 3D	2	-	2
	Подготовка и исполнение на 3D принтере.			
36.	3D моделирование. Блок практики.			
50.	Модель «Усилитель звука для			
	смартфона». Подготовка и исполнение	2	-	2
	на 3D принтере.			
37.	3D моделирование. Блок практики.			
	«Цифровые солнечные часы».	4		4
	Подготовка и исполнение на 3D	4	-	4
	принтере.			
38.	3D моделирование. Блок практики.			
	Чертеж «Кубик-подсказчик». Бумажное	4	-	4
	и программное исполнение.			
39.	3D моделирование. Блок практики.			
	«Кубик-подсказчик». Подготовка и	4	-	4
	исполнение на 3D принтере.			

1.40 1.00			
40. ЗD моделирование. Блок практики. Чертеж «Корпус для проекта «Светофор»». Бумажное и программное исполнение.	4	-	4
41. ЗD моделирование. Блок практики. «Корпус для проекта «Светофор»». Подготовка и исполнение на 3D принтере.	4	-	4
42. 3D моделирование. Блок практики. Чертеж «Корпус для проекта «Метіпі, novi» («Помню, знаю»)». Бумажное и программное исполнение.	4	-	4
43. 3D моделирование. Блок практики. «Корпус для проекта «Метіпі, novi» («Помню, знаю»)». Подготовка и исполнение на 3D принтере.	4	-	4
44. ЗD моделирование. Блок практики. Чертеж «Корпус для проекта «Стрелка»». Бумажное и программное исполнение.	6	-	6
45. ЗD моделирование. Блок практики. «Корпус для проекта «Стрелка»». Подготовка и исполнение на 3D принтере.	4	-	4
46. 3D моделирование. Блок практики. Чертеж «Корпус для проекта «Определитель цвета»». Бумажное и программное исполнение.	6	-	6
47. 3D моделирование. Блок практики. «Корпус для проекта «Определитель цвета»». Подготовка и исполнение на 3D принтере.	4	-	4
48. ЗD моделирование. Блок практики. Чертеж «Ветряной генератор». Бумажное и программное исполнение.	6	-	6
49. 3D моделирование. Блок практики. «Ветряной генератор». Подготовка и исполнение на 3D принтере.	4	-	4
50. 3D моделирование. Блок практики. «Ветряной генератор». Сборка устройства, проверка работы.	6	-	6
51. ЗD моделирование. Блок практики. Разбор и исполнение интересных моделей по заявкам учеников.	8	-	8
52. Открытое занятие. Демонстрация изученного материала.	4	-	4
Итого за год обучения:	272		

ОСНАЩЕНИЕ И НАГЛЯДНЫЕ ПОСОБИЯ

Обучение по программе осуществляется в помещениях и с использованием оборудования «Кванториума» Волжского городского лицея.

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Для организации педагогического процесса широко используются учебнонаглядные пособия, как готовые, так и разработанные преподавателем для лучшего усвоения материала: презентации, аудио- видео- материалы.

Методические пособия для педагогов дополнительного образования:

- 1. Зараменски Е., Артемьев И. Интернет вещей. Исследования и область применения. М.: Инфра-М, 2016. 188 с.
- 2. Петин В.А. Проекты с использованием контроллера Arduino. СПб.: БХВ-Петербург, 2016. 464 с.
- 3. Юревич Е. И. Основы робототехники. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2005. 416 с., ил.
- 4. Образовательная робототехника во внеурочной деятельности: учебнометодическое пособие /В. Н. Халамов и др. Челябинск: Взгляд, 2011. 96 с ил.

Список литературы для школьников для освоения учебной программы:

- 1. Дж. Блум Изучаем Arduino. Инструменты и методы технического волшебства. СПб.: БХВ-Петербург, 2015. 336 с.
- 2. Грингард С. Интернет вещей: Будущее уже здесь. М.: Альпина Паблишер, 2016.
- 3. Петин В.А. Arduino и Raspberry Pi в проектах Internet of Things. СПб.: БХВ-Петербург, 2016. 320 с.

Интернет ресурсы:

- 1. www.amperka.ru
- 2. http://www.int-edu.ru/
- 3. http://raor.ru/
- 4. http://arduino.cc/
- 5. https://www.tinkercad.com/

6. https://www.thingiverse.com/